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Abstract--Experimental data obtained on plate and smooth blockages under two-phase flow conditions 
in a square vertical channel have been presented and analysed using the Janssen-Kervinen and 
momentum-energy models. The vena contracta coefficients obtained for plate blockages using these 
models agree well up to about 30% void fraction. It is observed that the contraction coefficients for 
two-phase flow differ somewhat from those for single-phase flows. The irreversible pressure loss 
coefficients for plate and smooth blockages depend on blockage severity and void fraction. 
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1. I N T R O D U C T I O N  

The optimal safe operation of many processes requires the evaluation of  the two-phase pressure 
drop associated with enlargements, contractions, orifices, inserts etc. The problem is particularly 
important  in natural circulation units and in safety analysis of  nuclear reactors. Despite the sizable 
amount  of  data collected, an accurate prediction of this pressure drop has not yet been achieved. 
The aim of  this paper is to review the calculation of pressure drops caused by singularities in a 
channel, and to present irreversible pressure drop data for plate and smooth blockages along with 
the axial distribution of  pressures and void fractions in a square vertical channel. 

2. L I T E R A T U R E  SURVEY ON T H E  E S T I M A T I O N  OF I R R E V E R S I B L E  
P R E S S U R E  LOSSES 

Sudden enlargement 

Consider the enlargement illustrated in figure 1. Fluid emerging from the smaller pipe is unable 
to follow the abrupt  deviation of the boundary. Consequently, pockets of  eddies form in the corners 
and result in the dissipation of mechanical energy as heat. The determination of  the irreversible 
component  of  the total pressure drop requires the use of  the momentum and energy conservation 
equations. The total pressure drop (reversible and irreversible) between planes 1 and 2 in figure 
1 is obtained by applying the momentum equation to the volume limited by these planes and the 
walls of  the pipe. It is also assumed that the wall friction is negligible, and the pressures and 
velocities of  each phase in planes 1 and 2 are uniform. In turn, the viscous term appearing in the 
energy equation is identified as the irreversible component  of  the total pressure drop. This general 
approach has been used by Kays (1950), Hewitt & Hall Taylor (1970), Collier (1972) and Delhaye 
(1981), among others, to determine the irreversible pressure loss under single-phase and two-phase 
flow conditions. The local conservation equations for a steady-state two-phase flow are given 
below: 

(a) mass, 

(b ) momentum, 

0-~ (AG) = 0; [ l ]  

a (AG2v,)+ Op az A ~  = - p w  ~w - AOg, [2] 
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where v' is the momentum specific volume and is defined as 

x 2 ( l - x )  2.  

epG (1 - E)pL'  

and 

(c) energy, 

where 

.4 df'~ZZ \PH / / - - ~  (A~')  = 0' 

and ~b' is the viscous dissipation. 

x 3 (1 - x )  3 Vtt2 = - -  
E2pg (1 -- E)2 p~. ' 

1 x (1 - x )  

PH PG PL 

[31 

Integrating [2] and [3] over the control volume shown in figure 1 and combining the resulting 
equations the irreversible pressure loss can be written as 

{ [ x2 (l--X)2 1 [ X3 (I--x)3 l" ~ 
Ap, cxp=G~(1 - a )  a E--~G+ - - -~(1  + a )  + . [4] 

. 6 - -  E-~L J ~ (1 - -  E)2 P~.JJ  

Janssen & Kervinen (1964) assumed that the total pressure change, (P2-P~)T, is given by 

(P2 - P, )T = (P2 - P, )r~ + Ap[ - A p r ,  [5] 

where (P2 - P ]  )~ is the reversible pressure change and Ap~ and ApE are irreversible pressure drops 
due to expansion and wall friction, respectively. The reversible pressure change is estimated by 
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Figure 1. Sudden enlargement. 
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Figure 2. Sudden contraction. Figure 3. Sharp inserts: (a) short insert; (b) long insert. 
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integrating [2] in a duct of varying flow section with the assumption of negligible wall friction, while 
the term (P2- PJ )v + ApF is estimated by integrating the same equation over the control volume 
seen in figure 1. Assuming a constant void fraction along the duct, the irreversible pressure loss 
has the following form: 

1 G~ 
ApI.exp = - ~ p--7 (1 - a)2 [6] 

where p ' =  1/v' is the momentum density. Even though the use of the momentum density is 
consistent with the actual theoretical model, Morris (1984) suggested a correction to take into 
account the liquid entrained by the gas in the evaluation of momentum flux. When the effective 
specific volume ve defined by Morris is compared with the present momentum specific volume 
(v' = l/p') the observed differences are of the same order of magnitude as the experimental errors 
(+5%) .  

Sudden contraction 
Immediately downstream of the area change a vena contracta is formed (figure 2). After the vena 

contracta, the flow widens to fill the pipe. Eddies formed between the vena contracta and the wall 
of the pipe cause practically all the dissipation of energy. Therefore, it is usually assumed (Kays 
1950; Hewitt & Hall Taylor 1970; Collier 1972; Delhaye 1981) that the contraction of the fluid to 
the vena contracta (plane C) is reversible and the irreversible pressure drop takes place only in the 
region of the flow expansion from the vena contracta to the flow section of the smaller tube. Using 
the above approximation and [4], the irreversible pressure drop for an incompressible flow with 
constant void fraction along the duct is given by 

(l - 2 L r  x L Lepo + 

PL J J 

where C (=Ac/A2) is the contraction coefficient and tr = AJA2. 
Similarly, applying [6] to the expansion from the vena contracta to the flow section of the smaller 

tube, the following equation is obtained for the irreversible pressure drop: 

Apl .... = - _-77 , ~  - 1 . [8] 
2 

Sharp insert 
Sharp inserts are defined as a sudden contraction in a channel followed by a sudden expansion. 

Depending on the distance between the contraction and the expansion, the inserts are classified as 
long or short [figure 3(a,b)]. With short inserts, the vena contracta forms outside of the restriction 
while for long inserts, it forms within the length of the restriction. 

Contraction and expansion losses cannot be separated in the case of short inserts. However, 
Janssen & Kervinen (1964), assuming that the contraction losses are small compared to the 
expansion losses [from the vena contracta, A3, to the channel flow section, A4; figure 3(a)] and that 
the pressure P3 acts uniformly on the plane 3 containing the vena contracta, established the 
following relationship for the irreversible pressure loss: 

G~ ~(PL X2~ 1 2 aC 2 1 2 /, aC "~2 --,, ] Aps| 

- 2 a C [ ~ x : ( l - ~ ) + ( l - x ) 2 ( l  IE3 1~C-~4)3} ' [9] 
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where 

1 
= ~ (E3 + E4), 

A2 A2 
Am A4 

and 

A3 
C ~ _ -  

A2 

The assumption of a constant void fraction along the tube leads to 

1G (1 )2. 
Aps' ---- -- -2 ~7 \ ~  -- 1 [10] 

In turn, using the same assumption as Janssen & Kervinen (1964) and applying the 
momentum-energy approach as used by Hewitt & Hall Taylor (1970) for a sudden expansion, the 
following relationship results: 

where 

A2 

AI 

and 

A3 
C ~ _ _ ,  

A2 

The homogeneous two-phase density p. is calculated at the mid-plane conditions of the blockage. 
The assumption of a constant void fraction along the channel yields 

G~ 1 
p,,2[_(aC) 2 11}. [12] 

With long inserts, the ftow in the contracted section of the channel becomes fully developed 
[figure 3(b)]. Consequently, the contraction and expansion losses can be separated and the 
irreversible pressure loss of a long insert may be predicted by a simple summation of pressure losses 
through the contraction and expansion (Janssen & Kervinen 1964). 

Very limited data exists in the open literature on the irreversible pressure losses caused by inserts. 
Janssen & Kervinen (1964) conducted experiments to determine the pressure losses caused by short 
and long inserts in flow channels for steam-water mixtures for pressures between 4.14 and 
9.65 MPa, flow rates from 340 to 2700 kg/m2s and qualities from 0 to 90%. A study was also made 
to determine the void fractions and the flow pattern in the vicinity of the insert using high-speed 
movies. The authors observed a strong mixing as the flow contracts and the formation of avena 
contacta just past the contraction inlet of a long insert or just downstream of a short one. The 
vena contracta area is found to be smaller for long contraction-expansion inserts than for short 
ones. The momentum equations developed for short, [9], and long inserts predicted the measured 
irreversible pressure losses with reasonable accuracy with a slip ratio > 1 everywhere except for the 
vena contracta of long inserts where its value is equal to I. Weisman et al. (1978) determined 
two-phase flow pressure losses across abrupt area changes (contraction, expansion and a 
combination of the two) and restrictions (short and long inserts). Freon-113 was used as the 
working fluid. The void fractions upstream and downstream of the perturbed area were measured 
by impedance voidmeters. The authors, using their own data and those of other investigators, 
showed that a one-dimensional momentum balance can be used to predict pressure losses across 
abrupt area changes, provided that the void fractions are estimated appropriately. 
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The effect of flow blockage geometry on the pressure drop, the void distribution and the flow 
pattern transition in horizontal two-phase flow has been studied by Salcudean e t  al. (1983a-c). The 
authors observed that the two-phase multiplier depends on the blockage shape and its location in 
the flow section. For a given blockage fraction, the largest values of the two-phase multiplier are 
produced by peripheral blockages and are due to the interception of the liquid phase by these 
blockages. The central blockages, since they intercept the gaseous phase, yielded lower values for 
the two-phase multiplier. 

Ori f i ces  

Orifices are used by the process industry to measure and control the flow and to determine the 
dryness fraction. Consequently, a good deal of data exists on the pressure drop characteristics of 
orifices. Data under air-water flow conditions have been collected by Simpson et  al. (1979, 1983), 
Fairhurst (1983) and Chen e t  al. (1986). Data for steam-water flows have been given by Hoopes 
(1957), Monroe (1958), Thorn (1963), Bizon (1965) and Chisholm & Watson (1965), among others. 
Different approaches have also been proposed to estimate two-phase pressure drops caused by 
orifices (Chisholm 1967a,b, 1983; Fairhurst 1983; Simpson e t  al. 1983; Chen e t  al. 1986). 

S m o o t h  inser t  

An asymmetrical smooth insert is illustrated in figures 4(a,b). In the expansion region (between 
planes 2 and 4), the flow can separate from the surface of the insert [figure 4(a)]. It could also be 
argued that the separation point would move upstream with increasing insert severity. If the flow 
separation occurs in the upstream region of the mid-plane, the formation of a vena contracta 
downstream of this plane should be possible [figure 4(b)]. As a first approximation, it can be 
assumed that the irreversible pressure drop occurs during the expansion of the flow between planes 
2 (mid-plane) and 4. Therefore, [10] or [11] may be employed to estimate this pressure drop. 

FLOW 

MID PLANE . - ~  

A 4 ~ A 2 A 3 A 
I X I i 14 
I k i , 

g(~ssf 
, , 

I I 
I i 
I i 

"- 7 - -  - - 1 -  I - 
I / ~ _ _ ~  ~ ~ , / ~  FLOW SEPARATION WITHOUT 
I VENA CONTRACTA 
i 1 1 1 1 1  / x / / / /  
t I I I 
I I I I 
t 2 3 4 

(o) 

VENA CONTRACTA 

"',' ?i'/ :' 
/ / / J  

A 

;;/  
FLOW L - ~ ~  ~ -- _ _ ]  

..... J... 
II I 

II i 
23 4 

(b) 

Figure 4. Smooth insert: (a) without formation of the vena contracta; (b) with formation of the vena contracta. 
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3. EXPERIMENTAL APPARATUS 

The test section on which the blockage experiments have been conducted is made up of a 
12.65 mm 2 channel machined from an acrylic block. Two blockage configurations were considered: 
plate and smooth. The shape of the latter blockage was a cosine. The plate blockage could be 
moved continuously in the radial direction to achieve any blockage fraction. Table 1 lists the 
geometric parameters of the blockages. 

Table 1 

Plate Blockage 
Area reduction (%) 21.0 41.5 61.3 
Thickness, I (mm) 3.2 3.2 3.2 
Height, h (mm) 2.7 5.3 7.5 

Smooth Blockage 
Area reduction (%) 20.1 41.4 59.5 
Length, L (mm) 51.0 51 .0  50.0 
Height, h (mm) 2.5 5.2 7.6 

The main parameters measured are: inlet liquid and gas flow rates, axial pressures and average 
axial void fractions (by conductivity method) upstream and downstream of the blockage. The 
region over which the pressures are measured extends to 514 and 857mm upstream and 
downstream of the mid-plane of the blockage. For void fraction this region extends to 323 mm 
upstream and 876 mm downstream of the blockage. Details on the experimental methods and the 
conditions under which the experiments have been conducted are given in Tapucu et al. (1988). 

4. EXPERIMENTAL RESULTS 

As a typical example, figures 5a and 5b give the pressure and void fractions measured upstream 
and downstream of a 40% plate blockage. Far from the blockage, the pressure varies linearly. A 
sudden pressure drop is observed in the blocked region. The different components of this pressure 
drop can be written as 

Apb = Apfo~m + Apfriction + APgravity, [13] 

mpfor m is related to the dissipation of mechanical energy as heat in the recirculation zone behind 
the blockage and is equivalent to Aps ~ appearing in [9] and [11], APrr~¢tion is given by 

Apfriction~_ - 1~2 "~Z fo 

The acceleration pressure loss caused by the expansion of the gas with the sudden decrease of 
the pressure in the blocked region is incorporated in the form pressure drop. Since the thickness 
of the plate blockage is small, the friction and gravity terms can be neglected and Apb becomes 
approximately equal to Aprorm. However, this does not hold true for a smooth blockage where the 
length is 50 mm. Therefore, the friction and gravity pressure loss terms should be evaluated 
adequately and subtracted from Apb to determine Apro~m. For plate blockages, the irreversible form 
pressure drop, Apfor m ,~ Apb, is obtained by extrapolating the linear pressure variations upstream 
and downstream of the blockage to the mid-plane of the blockage (figure 5a). For smooth blockage, 
this pressure drop is obtained by extrapolating these linear pressure variations to the lower and 
upper planes which limit the blockage. Data on pressure drops caused by different blockages are 
given in Tapacu et al. (1988). 

As can be seen from figure 5b, the void fractions in the far upstream and downstream regions 
of the blockage are almost uniform. Due to the pressure drop along the channel, the value of the 
void fraction far downstream of the blockage is somewhat higher than that in the far upstream 
region. In general, close to the blockage in the upstream region the void fraction shows a slight 
decrease. However, immediately downstream of the blockage, a high void fraction region is 
observed. This region is probably a consequence of the rather large bubbles trapped in the 
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recirculation zone which develops behind the blockage. The length of the high void region, l, is 
estimated by examining the axial void profiles, similar to that given in figure 5b, and determining 
the point where the void fraction behind the blockage reaches its asymptotic value. Figure 6 gives 
the variation of the length of the high void region as a function of the blockage fraction. It seems 
that this length depends on the void and blockage fractions, and for blockage severity <40%, on 
the shape of the blockage. 
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5. C O N T R A C T I O N  C O E F F I C I E N T  

In the derivation of irreversible pressure losses caused by inserts, [9] and [11], it was assumed 
that all pressure losses take place during the expansion from the vena contracta to the flow section 
of  the tube. Consequently, the aforementioned equations contain, among other parameters, the 
contraction coefficient (C) and the void fraction at the vena contracta and far downstream of  the 
blockage. Teyssedou (1987) measured the local void fraction profiles at different locations upstream 
and downstream of  plate blockages of  varying severities. He observed that the average void fraction 
in the contracted zone is quite close to the average void fraction in the channel. Therefore, in the 
determination of  the contraction coefficient using data on the irreversible form pressure losses, it 
is assumed that the void fraction at the vena contracta is equal to the arithmetic average of the 
void fraction far upstream and downstream of the blockage. 

Figure 7 gives the contraction coefficients calculated using the Janssen-Kervinen [10], and 
momentum-energy, [11], models. The contraction coefficients calculated with the two models agree 
well up to about 30% void fraction, after which increasing differences have been observed with 
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Table 2. Vena contracta coefficients and the location of the flow separation for smooth blockages 

59 

Average void Janssen-Kervinen model Energy-momentum model 
Blockage Mass flux 

(%) ~3 ~4 (kg/m 2 s) C Z (mm) C Z (mm) 

20.1 0.0 0.0 2078.2 1.I00 14.91 1.I00 14.91 
20.1 0.21 0.21 2078.5 1.027 7.39 1.046 9.82 
20.1 0.46 0.46 2079.1 0.910 0.0 0.767 0.0 
20.1 0.60 0.60 2074.6 0.838 0.0 0.538 0.0 
41.4 0.0 0.0 2073.0 1.283 15.02 1.283 15.02 
41.4 0.21 0.21 2081.1 1.130 9.92 1.145 10.53 
41.4 0.46 0.46 2078.1 0.946 0.0 0.827 0.0 
41.4 0.60 0.60 2070.7 0.811 0.0 0.578 0.0 
59.5 0.0 0.0 2068.4 1.375 11.78 1.375 I 1.78 
59.5 0.0 0.0 3089.4 1.391 12.03 1.391 12.03 
59.5 0.21 0.21 2072.6 1.118 6.74 1.134 7.14 
59.5 0.40 0.40 2072.7 0.950 0.0 0.934 0.0 
59.5 0.61 0.61 2065.0 0.829 0.0 0.638 0.0 
59.5 0.46 0.46 2069.1 0.924 0.0 0.831 0.0 

increasing void fractions. At this stage, it is rather difficult to decide which contraction coefficient 
is more realistic without carrying out further experiments aimed at determining the extent of  the 
vena contracta. Therefore, the best approach is to use the contraction coefficient from figure 7 
corresponding to the model chosen. It is also observed that the C-coefficients obtained under 
two-phase flow conditions differ somewhat from those obtained under single-phase flow conditions. 
In both cases, this coefficient shows a clear tendency towards unity as the blockage fraction goes 
to zero. For  blockage fractions >40%,  the decrease in the contraction coefficient with increasing 
blockage fraction is quite slow. 

Equations [10] and [12] have also been employed to determine the C-coefficients for smooth 
blockages. This coefficient is defined as the ratio of  the flow area in the vena contracta to that in 
the mid-plane of  the blockage [figure 4(b)] and by definition should have values < 1. The resulting 
C-coefficients are shown in table 2 and in half of  the runs they are > l .  The values > l  are 
interpreted as indicating that there is no formation of vena contracta. However, the flow may 
separate from the blockage surface in the downstream region of the mid-plane [plane 3 in figure 
4(a)]. It can be assumed that all the irreversible form pressure loss takes place during the expansion 
from the flow section corresponding to the separation point, A 3, to the flow section of the channel, 
A4 [see figure 4(a)]. The value of the flow section A3, i.e. the point where the flow separates from 
the surface of the blockage, has been estimated by setting C = 1 in the theoretical model, [10]. 
The distance of the separation point (Z) to the mid-plane of  the blockage is also given in table 2. 
Values of  C < 1 may be interpreted as indicating the existence of a vena contracta. As illustrated 
in figure 8, the C-coefficients calculated with the momentum-energy  model differ appreciably from 
those of  the Janssen-Kervinen model. 

6. I R R E V E R S I B L E  P R E S S U R E  D R O P  C O E F F I C I E N T  

The irreversible pressure drop caused by inserts can be written as 

G 2 
Apform. ~p = - KTp - -  [ 14] 

2p '  

and by comparing [14] with [10], the relationship between KTp and the contraction coefficient is 
easily obtained: 

( 1 )  ~ . K-rp= ~ - ~ -  1 [151 

Using the form pressure loss and void fraction data given by Tapucu et al. (1988), the irreversible 
pressure loss coefficient (KTp) appearing in [14] has been calculated for plate and smooth blockages. 
The variations of  this coefficient for both blockages as a function of  the void fraction for a given 
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blockage fraction and as a function of the blockage fraction for a given void fraction are shown 
in figures 9-11. 

For plate blockages, at a given blockage fraction, the irreversible pressure loss coefficient first 
decreases with increasing void fraction and then increases (figure 9). However, the overall changes, 
within the range of void fractions studied (0-60%), were rather small. Therefore, the dependency 
of this coefficient on void fraction can be considered as weak. On the other hand, as illustrated 
in figure 11, the KTp-COefficient increases rapidly with increasing blockage fraction. 

For smooth blockages, the irreversible pressure loss coefficient increases with increasing void and 
blockage fractions (figures 10 and 11). Figure 11 also compares the KTp-COefficient obtained for 
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Figure 11. Irreversible pressure loss coefficients for plate and smooth blockages. 

plate and smooth blockages. It is observed that smooth blockages yield substantially lower 
Kip-coefficients than plate blockages. 

Defining the form two-phase multiplier as 

~b~or~ = Apr°r~'TP [161 
mpform, sP 

and using [14] for single- and two-phase flows, the above equation can be written as 

z KTp PL 
(~) form = [ 1 7 ]  

Ksp p" 

The variation of 4)~o~m with blockage fraction is shown in figures 12 and 13 for plate and smooth 
blockages, respectively. No data have been collected for blockage fractions <20%. However, since 
the contraction coefficients for single- and two-phase flows seem to tend toward unity simulta- 
neously when the blockage approaches zero (figure 7), by using [15] it can be seen that KTp/Ksp 
would tend toward unity and ~f2orm toward PL/P'. The variation of this multiplier with the flow 
dryness fraction for sharp and smooth blockages is given in figure 14. The higher values of ~o~m 
observed for smooth blockages are simply the consequence of the small pressure losses caused by 
smooth blockages under single-phase flow conditions. Figure 14 also compares the two-phase 
multipliers obtained for plate blockages with those for orifices used by Simpson et al. (1979). The 
plate blockages seem to yield somewhat higher values than the orifices. 

7. CONCLUSIONS 

In this paper the irreversible form pressure losses caused by plate and smooth blockages for 
air-water flows close to atmospheric pressure conditions have been investigated. Visual observation 
of the blocked region showed that a recirculation zone forms on both sides of the blockage. The 
upstream recirculation zone is small and rich in liquid, whereas the downstream recirculation zone 
is large and has a high void content. 
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The Janssen-Kervinen and the momentum-energy models were used to calculate the vena 
contracta coefficients for plate and smooth blockages. Since for the present experimental conditions 
the compressibility effects of the gas were negligible, the above models were used with the 
assumption that the flow was incompressible. No attempt was made to take into account the liquid 
entrained by the gas (Morris 1984), since such an approach requires an additional parameter-- the 
entrainment coefficient. 
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The vena contracta coefficients for plate blockages determined using the Janssen-Kervinen and 
momentum-energy models agree well up to about 30% void fraction. It is observed that the 
contraction coefficients obtained under two-phase flow conditions differ somewhat from those 
obtained under single-phase flow conditions. 

The irreversible form pressure loss coefficients determined for plate and smooth blockages 
depend on blockage severity and void fraction. However, for plate blockages the dependence of  
this coefficient on void fraction is rather weak. 

N O M E N C L A T U R E  

A = Flow area (m 2) 
C = Vena contracta coefficient 
G = Mass flux (kg/m 2 s) 
K = Irreversible pressure loss coefficient 
g = Acceleration of gravity (m/s 2) 
p = Pressure (Pa) 
v ' =  Momentum specific volume (m3/kg) 
Ve = Effective specific volume (m3/kg) 
x = Dryness fraction 
z = Axial distance (m) 
E = Void fraction 

Pw = Perimeter (m) 
Ap = Pressure drop (Pa) 

Apa¢¢e~ = Acceleration pressure drop (Pa) 
A p b  = Total pressure drop caused by the blockage (Pa) 

APfor m = Form pressure loss (Pa) 
Aprriction = Friction pressure loss (Pa) 
mpgravity = Gravity pressure loss (Pa) 

p = Density (kg/m 3) 
= Two-phase mixture density, EpG + (1 - ~ : ) P L  (kg/m3) 

PH = Homogeneous two-phase specific density (kg/m 3) 
tr = Area ratio (AdA2) 

Zw = Wall shear stress (N/m 2) 
4)' = Viscous dissipation (J/m 2 s) 

2 t~form ~ - T w o - p h a s e  form multiplier 
q~z L = Two-phase multiplier 

Subscripts 
G = Gas 
L = Liquid 

TP = Two-phase 
SP = Single phase 
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